DRAM: Efficient adaptive MCMC

نویسندگان

  • Heikki Haario
  • Marko Laine
  • Antonietta Mira
  • Eero Saksman
چکیده

We propose to combine two quite powerful ideas that have recently appeared in the Markov chain Monte Carlo literature: adaptive Metropolis samplers and delayed rejection. The ergodicity of the resulting non–Markovian sampler is proved, and the efficiency of the combination is demonstrated with various examples. We present situations where the combination outperforms the original methods: adaptation clearly enhances efficiency of the delayed rejection algorithm in cases where good proposal distributions are not available. Similarly, delayed rejection provides a systematic remedy when the adaptation process has a slow start.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying Atmospheric Chemistry with MCMC

A model describing chemical reactions in the stratosphere ([1]) is studied with MCMC methods. The model is a large ODE system consisting of 33 components, roughly 150 reactions and 150 reaction rate parameters. Thus, it is a good case study for adaptive MCMC methods designed for high-dimensional problems. In this case, the Delayed Rejection Adaptive Metropolis (DRAM, [2]) is succesfully applied...

متن کامل

Probabilistic Damage Characterization using a Computationally-Efficient Bayesian Approach

This work presents a computationally-efficient approach for damage determination that quantifies uncertainty in the provided diagnosis. Given strain sensor data that are polluted with measurement errors, Bayesian inference is used to estimate the location, size, and orientation of damage. This approach uses Bayes’ Theorem to combine any prior knowledge an analyst may have about the nature of th...

متن کامل

Gradient-free MCMC methods for dynamic causal modelling

In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-bas...

متن کامل

MCMC algorithms for Subset Simulation

Subset Simulation is an adaptive simulation method that efficiently solves structural reliability problems with many random variables. The method requires sampling from conditional distributions, which is achieved through Markov Chain Monte Carlo (MCMC) algorithms. This paper discusses different MCMC algorithms proposed for Subset Simulation and introduces a novel approach for MCMC sampling in ...

متن کامل

Exploring an Adaptive Metropolis Algorithm

While adaptive methods for MCMC are under active development, their utility has been under-recognized. We briefly review some theoretical results relevant to adaptive MCMC. We then suggest a very simple and effective algorithm to adapt proposal densities for random walk Metropolis and Metropolis adjusted Langevin algorithms. The benefits of this algorithm are immediate, and we demonstrate its p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006